wrapper

 
(495) 526-63-63
E-MAIL: OFFICE@VNIIFTRI.RU

  • :
  • :
  • .
15.07.2020

 

РУС/ENG   

The Research Department of Metrology in Mechanics, Thermodynamics and Construction (NIO-3 FSUE VNIIFTRI) develops and solves the problems of metrological support of priority areas and critical technologies in the following areas and types of measurements:

  • temperature and thermophysical measurements (temperature, heat capacity, thermal conductivity, temperature coefficient of linear expansion). LABORATORY 310 "TEMPERATURE AND THERMOPHYSICAL MEASUREMENTS"
  • measurements of physicomechanical characteristics of building materials and structures (strength, frost resistance, porosity, water resistance, heat and sound insulation).
  • LABORATORY 330 "METROLOGY IN CONSTRUCTION"
  • vibroacoustic measurements. DEPARTMENT 340 "ACOUSTIC MEASUREMENTS IN THE AIR ENVIRONMENT"
  • measurements of dynamic and static pressures, physics and chemistry of explosive and shock-wave processes, measurements of force, moment, physicomechanical properties and characteristics of materials and continuous media, measurements of parameters of flows of gases, liquids and gas-liquid systems, eddy turbulent flows.
  • LABORATORY 350 "MEASUREMENTS OF STATIC AND PULSE PRESSURES, PARAMETERS OF SHOCK-WAVE PROCESSES AND MECHANICAL VALUES"
  • measuring the hardness of materials. LABORATORY 360 "MEASUREMENTS OF HARDNESS"

The department stores and maintains in working condition 11 state standards, three installations of the highest accuracy, two secondary and more than 30 working standards. Work is underway to improve state standards and create new standards.

The test base of the department allows testing of measuring instruments in the field of mechanics, pulsed and static pressures, vibroacoustics, hardness, construction, temperature and thermal measurements.

MAIN ACTIVITIES:

  • Storage of existing and development of new standards, high-precision equipment and measuring instruments.
  • Metrological services (verification, calibration, testing of MI, metrological work on certification and accreditation and metrological research) for various customers, scientific and methodological management of departmental services and the implementation of development for them.
  • Certification of construction testing laboratories is carried out according to VTS VNIIFTRI VTS system, certification testing of products in the GOST R system and participation in their implementation. Certification of explosives. Certification works in the system of certification of rescue equipment of EMERCOM of Russia.
  • Work on standardization in the fixed types of measurements.
  • International work (cooperation with foreign organizations, performance of work under contracts, participation in the work of international organizations ISO, OIML and IEC, conferences and symposia).
  • Conducted fundamental and applied research aimed at improving the system to ensure unity and increase the reliability of measurements in the assigned areas of activity. NTD is developed (GOST, methods), and also metrological examination of state and industry documents and programs, including environmental ones, is carried out in the fixed areas of measurement.
  • Research, development, development and technological, implementation works and services to provide industry, medicine and other branches of science and national economy with measuring instruments, calibration equipment and metrological services are being carried out according to the specialization of the department.
  • A unique complex of standards of various levels, test facilities and stands was created and is in operation, ensuring the transfer of unit sizes to working standards and the SI services of territorial standardization and metrology bodies of Russia and other organizations.
The scientific potential of the department allows you to carry out promising developments and carry out complex metrological work in a short time and with the highest accuracy. The works are aimed at the availability of measurement accuracy required by consumers with high reliability, minimal cost of funds and time.

Head of NIO-3

Aslanyan Eduard Georgievich

Tel./Fax (495) 526-63-41

E-mail: nio3@vniiftri.ru

 

Deputy Head of NIO-3

Yuryev Boris Viktorovich

Tel./Fax (495) 526-63-41 ext. 25-07

E-mail: yu@vniiftri.ru

WORKS AND SERVICES:

The main activities of the laboratory are:
  • Creation, maintenance and operation of state primary standards and measuring instruments of the highest accuracy in the field of temperature and thermophysical measurements, development of methods and means of transferring units of measurement from standards to working measuring instruments.
  • Development of new standard measuring instruments.
  • Conducting fundamental and applied research aimed at improving the unity and reliability of temperature and thermophysical measurements in the country.
  • Verification and calibration of temperature and thermophysical measurements.
  • Tests of means of temperature and thermophysical measurements for the purpose of type approval.
  • Certification test equipment.
  • Development of regulatory documentation (GOST, calibration methods, measurement techniques).
  • Production of resistance thermometers (PTSV).
  • DESCRIPTION OF THE PRODUCED PRODUCTS:
  • Resistance thermometers platinum reference exemplary vibration-proof (PTSV).
  • Manufacture including according to individual customer specification.

DESCRIPTION OF THE PRODUCED PRODUCTS:

Resistance thermometers platinum reference exemplary vibration-proof (PTSV).
Manufacture including according to individual customer specification.

KEY OBJECTIVES:

Ensuring the unity and accuracy of measurements of temperature, thermal conductivity, heat capacity, linear expansion coefficient for temperatures below 273.16 K, satisfying the demands of industry, science and technology in the Russian Federation and not inferior to leading laboratories abroad in terms of metrological characteristics. Conducting international key comparisons of the BIPM and COOMET.

ACHIEVEMENTS OF SCIENTIFIC AND TECHNICAL CHARACTER:

Based on the research, a magnetic scale VNIIFTRI was developed in the range (0.3-0.8) K, which corresponds to the international scale for the melting curve of helium-3 PNTSh-2000.
Developed resistance thermometers platinum vibration-proof reference PTSV.
Modifications of cryostats inserts in nitrogen and helium transport vessels for a temperature range of (0.5-300) K have been developed.
One modification of the cryostat insert is designed to compare reference resistance thermometers and transfer the temperature scale to secondary standards.
The second modification is intended for automatic reproduction of reference points - triple points of neon, oxygen, argon and mercury gases using small-sized cells.

STATE PRIMARY STANDARDS:

  • State primary standard for the unit of temperature in the range (0.3-273.16) K. GET 35-2010.
  • State special standard unit of thermal conductivity of solids in the temperature range (4,2-90) K. GET 141-84
  • State special standard unit of specific heat of solids in the temperature range (4,2-90) K. GET 79-75
  • State special standard unit of temperature coefficient of linear expansion. GET 66-75
  • STATE WORKING STANDARDS:
  • State standard of the density unit of radiation heat flux in the range from 5 to 2,500 kW / m2 "3.1.ZZT.0159.2015
  • State working standard of the density unit of radiation heat flux in the range of values ​​from 1 to 5 kW / m2 3.1.ZZT.0229.2016
  • State working standard of thermal conductivity unit 2 discharge in the range of 0.02 W / (m K) - 15 W / (m K) in the temperature range 80K - 330 K 3.1.ZZT.0125.2014
  • The state working standard of unit of temperature of 1 category in the range from 273.16 to 692.67 K 3.1.ZZT.0192.2015
  • State working standard of the unit of temperature 0 discharge in the range from 692.68 ÷ to 1357.77 K 3.1.ZZT.0193.2015
  • The state working standard of the unit of temperature 0 discharge in the range from 77.3 to 302.9 K 3.1.ZZT.0194.2015
  • State working standard of the unit of temperature - Kelvin 0 discharge in the range (24.5 - 303.0) K 3.1.ZZT.0195.2015
  • State working standard of the unit of temperature 0 discharge in the range (0.65 - 293.0) To 3.1.ZZT.0196.2015

ГОСУДАРСТВЕННЫЕ РАБОЧИЕ ЭТАЛОНЫ:

  • Государственный эталон единицы плотности радиационного теплового потока в диапазоне от 5 до 2 500 кВт/м2» 3.1.ZZT.0159.2015
  • Государственный рабочий эталон единицы плотности радиационного теплового потока в диапазоне значений от 1 до 5 кВт/м2 3.1.ZZT.0229.2016
  • Государственный рабочий эталон единицы теплопроводности 2 разряда в диапазоне 0,02 Вт/(м К) - 15 Вт/(м К) в диапазоне температур 80К – 330 К 3.1.ZZT.0125.2014
  • Государственный рабочий эталон единицы температуры 1 разряда в диапазоне от 273,16 до 692,67 К 3.1.ZZT.0192.2015
  • Государственный рабочий эталон единицы температуры 0 разряда в диапазоне от 692,68÷ до 1357,77 К 3.1.ZZT.0193.2015
  • Государственный рабочий эталон единицы температуры 0 разряда в диапазоне от 77,3 до 302,9 К 3.1.ZZT.0194.2015
  • Государственный рабочий эталон единицы температуры - кельвина 0 разряда в диапазоне (24,5 – 303,0) К 3.1.ZZT.0195.2015
  • Государственный рабочий эталон единицы температуры 0 разряда в диапазоне (0,65 – 293,0) К 3.1.ZZT.0196.2015

ПУБЛИКАЦИИ:

Статьи:
  1. В. Г. Кытин, Г. А. Кытин. Анализ формы частотных зависимостей акустического cигнала при определении термодинамической температуры. Измерительная техника, № 1, с 43-45, 2016.
  2. В.Г. Кытин, Г.А. Кытин Моделирование акустического резонанса в сферических резонаторах для прецизионного определения термодинамической температуры. Измерительная техника, № 1, с 35-40, 2015.
  3. В.Г. Кытин, Г.А. Кытин, А.Н. Щипунов Измерение и анализ акустического резонанса в сферическом резонаторе, заполненном газообразным гелием для определения термодинамической температуры. Альманах современной метрологии, № 5 с. 33-41, 2015.
  4. К.Д. Пилипенко Перенос значения температуры на акустический резонатор, Сборник статей ФГУП ВНИИФТРИ, с. 125-131, Сборник статей ФГУП «ВНИИФТРИ», 2016.
  5. В.М. Малышев, К.Д. Пилипенко Передача значения температуры тройной точки воды на акустический резонатор методом сравнения. Измерительная техника, № 11, с 33-36, 2016.
  6. Б.Г. Потапов, В.Г. КытинТемпературный метод прецизионной стабилизации давления газа для аппаратуры по определению константы Больцмана. Журнал «Приборы» №10 с37-40, 2016.
  7. Astrov D.N., Ermakov N.B., Znatkov P.Y. Increasing the authenticity of the VNIIFTRI magnetic temperature scale in the range above 0,37 K by comparison with the international PLTS-2000 scale. Measurement techniques V. 54, P 180-185, 2011.
  8. Razhba I.E., Razhba I.A. Apparatus for realizing the ITS-90 in the temperature range from the triple point of argon to the melting point of gallium. Measurement Techniques V. 50, P 870-879, 2007.
  9. Astrov D.N., Ermakov N.B., Sviridenko V.I. The VNIIFTRI magnetic temperature scale in the 0,3-3 K range. Measurement Techniques V. 50, P 1165-1173, 2007.
  10. Filippov Y.P., Dedikov Y.A., Kytin G.A. Characteristics of cryogenic temperature sensors under magnetic fields. IEEE Transactions on applied superconductivity V. 16, P 445-448, 2006.
  11. Rusby R., Head D., Meyer K., Tew W., Tamura O., Hill K. D., Groot M., Strom A., Peruzzi A., Felmuth B., Engert J., Astrov D., Dedikov Y., Kytin G. Final report on CCT-K1: Realization of the ITS-90, 0.65 K to 24,5561 K, using rhodium-iron resistance thermometers. Metrologia V. 43, P 03002, 2006.
  12. Hill K.D., Steele A.G., Dedikov Y.A., Shkraba V.T. CCT-K2.1: NRC/VNIIFTRI bilateral comparison of capsule type resistance thermometers from 13,8 to 273,16 K. Metrologia V. 42, P 03001, 2005.
  13. Astrov D.N., Korostin S.V. Study of standard thermometers and their reproduction of the lambda point in liquid helium. Measurement Techniques V. 42, P 689-692, 1999.
  14. Astrov D.N., Ermakov N.B., Korostin S.V. On the intrinsic quadrupole electric field of a centrosymmetric dielectric. JETP Letters V. 67, P 15-21, 1998.
  15. Abilov G.S., Zaprudskii V.M., Malyshev V.M., Sviridenko V.I. A unified facility for low-temperature measurements. Measurement Techniques V. 41, P 541-543, 1998.
  16. Pavese F., Astrov D.N., Steur P.P.M., Ferri D., Giraudi D. Development of an accurate double-diaphragm sapphire cryogenic capacitive pressure transducer. Advances in Cryogenic Engineering V. 43, P 789-794, 1998.
  17. Astrov D.N., Belyanskii L.B., Korostin S.V., Polunin S.P. A simple helium flowmeter. Instruments and Experimental Techniques V. 41, P 129-130, 1998.
  18. Astrov D.N., Belyanskii L.B., Dedikov, Y.A. Corrected version of the VNIIFTRI gas-thermometric scale for the range 2,5-308 K. Measurement Techniques V. 39, P 857-860, 1996.
  19. Astrov D.N., Ermakov N.B., BorovikRomanov A.S., Kolevatov E.G., Nizhankovskii V.I. External quadrupole magnetic field of antiferromagnetic Cr2O3. JETP Letters V. 63, P 745-751, 1996.
  20. Astrov D.N., Belyansky L.B., Dedikov Y.A. Correction of the gas-thermometry scale of the VNIIFTRI in the range 2,5 K to 308 K. Metrologia V. 32, P 393-395, 1996.
  21. Astrov D.N., Korostin S.V., Polunin S.P. Thermometer working standard for temperatures below 0,5 K. Measurement Techniques USSR V. 38, P 1356-1359, 1995.
  22. Astrov D.N., Korostin S.V., Polunin S.P. A valve for precise gas measurements. Instruments and Experimental Techniques V. 37, P 509-510, 1994.
  23. Astrov D.N., Guillemot J., Legras J.C., Zakharov A.A. Intercomparison of primary manometers in the range 30 kPa to 110 kPa - pressure balance at the LNE and mercury manometer at the VNIIFTRI. Metrologia V. 30, P 711-715, 1994.
  24. Astrov D.N., Ermakov N.B. Quadrupole magnetic-field of magnetoelectric Cr2O3. JETP Letters V. 59, P 297-300, 1996.
  25. Abilov G.S., Razhba I.A., Vorfolomeev S.F., Kytin G.A. Measuring low-temperatures in strong magnetic-fields with resistance thermometers based on a rhodium-iron alloy. Measurement Techniques USSR V. 33, P 55-57, 1990.
  26. Abilov G.S., Razhba I.A., Astrov D.N. Measurement of low-temperatures in magnetic-fields with platinum resistance thermometers. Instruments and Experimental Techniques V. 32, P 500-503, 1989.
  27. Kytin G.A., Vorfolomeev S.F., Dedikov Y.A., Ermilova L.N., Astrov D.N. Document CCT/89-7, BIMP, 1989.
  28. Astrov D.N., Beliansky L.B., Dedikov Y.A., Zakharov A.A., Polunin S.P. Thermodynamic temperature scale from 13,8 to 308 K. Measurement Techniques USSR V. 32, P 72-81, 1989.
  29. Astrov D.N., Beliansky L.B., Dedikov Y.A., Polunin S.P., Zakharov A.A. Precision gas thermometry between 2,5 K and 308 K. Metrologia V. 26, P 151-166, 1989.
  30. Astrov D.N., Belyanskii L.B., Dedikov Y.A., Polunin S.P., Zakharov A.A., Ermakov N.B. Measuring thermodynamic temperatures at 2,5-27,1 K. Measurement Techniques USSR V. 30, P 889-892, 1987.
  31. Astrov D.N. On the principle of construction of the primary temperature standard. Measurement Techniques USSR V. 30, P 795-798, 1987
  32. Polunin S.P., Astrov D.N., Belyanskii L.B., Dedikov Y.A., Zakharov A.A., Gas thermometer for precision-measurement of thermodynamic temperatures below 300-degrees-K. Measurement Techniques USSR V. 30, P 236-241, 1987.
  33. Zakharov A.A., Astrov D.N., Belyanskii L.B., Dedikov Y.A., Polunin S.P. Measuring the pressure in a gas thermometer. Measurement Techniques USSR V. 30, P 242-247, 1987.
  34. Zakharov A.A., Astrov D.N., Belyanskii L.B., Dedikov Y.A., Polunin S.P. Mercury interference manometer. Instruments and Experimental Techniques V. 29, P 719-725, 1986.
  35. Кытин Г.А. Государственный первичный эталон единицы температуры ГЭТ 35-91. Мир измерений №2, с. 31-38, 2011.
Доклады:
  1. В.Г. Кытин, Г,А. Кытин Анализ формы частотных зависимостей звукового сигнала при определении термодинамической температуры акустическим методом, 5-я Всероссийская и стран КООМЕТ конференция по проблемам термометрии «Температура-2015» Тезисы с. 30-32, 2015.
  2. Kytin V.G., Kytin G.A. Modeling of acoustic resonance in spherical cavity: effect of line shape on determined temperature value. Theo Murphy international scientific meeting, P 2, 2015.
  3. Осадчий С.М., Ражба Я.Е., Малышев В.М., Термометры ПТСВ и термоконтроллер АКСАМИТ - основа измерительных технологий в области низких температур. Всероссийский симпозиум метрологов «Точность. Качество. Безопасность», Москва, ВВЦ, пав. 69, 19-21 мая 2015.
  4. Осадчий С.М., Потапов Б.Г., Соколов Н.А. , Приёмники тепловых потоков интенсивностью до 2.5 МВт/м2 и проблемы их калибровки. Пятая Всероссийская и стран-участниц КООМЕТ конференция по проблемам термометрии «ТЕМПЕРАТУРА 2015» , Санкт-Петербург, 21-24 апреля 2015.
  5. Леонова А.С. Исследование пространственного распределения элементов путем сопоставления данных рентгеновской микротомографии и рентгенофлуоресцентного анализа. IV Научно-практическая конференция молодых ученых, аспирантов и специалистов «Метрология в ХХI веке», ФГУП ВНИИФТРИ, 2016.
  6. Пилипенко К.Д. Перенос температуры с ампулы тройной точки воды на акустический резонатор. IV Научно-практическая конференция молодых ученых, аспирантов и специалистов «Метрология в ХХI веке», ФГУП ВНИИФТРИ, 2016.
  7. J. Fischer (PTB), C. Gaiser (PTB), R. Gavioso (INRIM), P. Steur (INRiM), G. Kytin (VNIIFTRI),M. de Podesta (NPL), M. Moldover (NIST), L. Pitre (LNE-CNAM), A. Pokhodun (VNIIM), P. Rourke (NRC), R. Teixeira (INMETRO), R. White (MSL), T. Nakano (NMIJ/AIST), I. Yang (KRISS), J. Zhang (NIM) Report on new determination of T-T90. TEMPMEKO Zacopane, Poland, Abstracts p. 120, 2016.
ГОСТы:
  1. Я.Е. Ражба ГОСТ Р8.855– 2013 «Термопреобразователи сопротивления эталонные низкотемпературные из платины и сплава родий-железо». Общие технические требования и методы испытаний. 2013.

WORKS AND SERVICES:

  • certification and certification of construction laboratories for technical competence;
  • tests for the approval of the type of measuring instruments;
  • certification of measuring instruments;
  • certification of test equipment;
  • development and certification of measurement methods (MVI);
  • development of methods for calibration and calibration of measuring instruments;
  • verification and calibration of measuring instruments;
  • metrological examination of technical documentation.

KEY OBJECTIVES:

Ensuring the uniformity of measurements in the construction industry.

MAIN FUNCTIONS:

  • solving methodological issues of ensuring the uniformity of measurements in the construction industry;
  • certification and certification of technical competence of construction laboratories;
  • measurement of physical and mechanical properties of building products and structures.

ACHIEVEMENTS OF SCIENTIFIC AND TECHNICAL CHARACTER:

  • The theory and instruments for contractometry were developed.
  • The system of voluntary certification VTS SIL FSUE VNIIFTRI, registered by Rosstandart, Reg. No. ROSS RU.V826.04FB30 (August 11, 2011).

PATENTED SOLUTIONS:

  • A method for determining the waterproofness of cement materials - Patent No. 2187804, 1999.

PUBLICATIONS:


  • A method for determining the waterproofness of cement materials - Patent No. 2187804, 1999.
  • PUBLICATIONS:
  • Markov A.I. “Contractometry and control algorithms for hardening and strength of concrete”, Coll. scientific works VNIIFTRI. - M., 1990.
  • Markov A.I. "Analytical basis for determining the strength of concrete by the force of the explosion of an anchor from it", Coll. scientific works VNIIFTRI. - M., 2004.
  • Nemchenko V.I., Schlegel V.R. “A set of instruments for monitoring the thermal performance of enclosing structures during construction and operation of facilities. "Science and technology of the city." Sat report conf. with. 181: M., 1998.
  • Nemchenko V.I., Schlegel V.R., Gusarov V.A. Installation for determining the thermal conductivity of building materials. "Science and technology of the city." Sat report conf. with. 181: M., 1998.
  • Denisov N.N., Yuryev B.V. “On the peculiarities of the metrological requirements applied by FSUE“ VNIIFTRI ”when certifying testing construction laboratories” // Mechanometry-2008, April 21-25, 2008, Suzdal.
  • Technical and metrological support of testing and quality control of construction products, Proc. manual for staff development courses of testing and calibration laboratories in construction, VNIIFTRI, 2007, 72 p.

VNIIFTRI is the leading organization of the Russian Federation in the field of acoustic measurements

ACOUSTIC MEASUREMENTS IN AIR ENVIRONMENT

At present, VNIIFTRI contains the State Standard for the Unit of Sound Pressure in Air (GET 19-2010), the accuracy of which has been confirmed by international key comparisons of national standards.

MAIN TYPES OF ACTIVITY OF THE ACOUSTIC MEASUREMENT DEPARTMENT

  • ENSURING THE UNITY OF MEASUREMENTS in the field of acoustic measurements, based on the storage and reproduction of a unit of sound pressure in the air by the State primary standard and the transfer of its size using standard measuring instruments (SI) to the working SI in accordance with the State verification scheme.
  • DEVELOPMENT OF REFERENCE SETTINGS for reproducing, storing and transmitting the size of a unit of sound pressure in the air by reference and operating SI.
  • TESTING AND CALIBRATION OF Vibroacoustic and Audiological SI.
  • TESTS in order to validate the type of vibro-acoustic SI.
  • CERTIFICATION of test facilities for determining the vibro-acoustic properties of materials, research and certification of measuring acoustic chambers (muffled and reverberation chambers, etc.).

DIRECTIONS OF INCREASING THE SCIENTIFIC AND TECHNICAL LEVEL:

  • FREE FIELD. Development and creation of a reference setup for reproducing a sound pressure unit over a free field in the range from 1.0 to 100 kHz
  • INFRAZVUC. Development and creation of a reference unit for reproducing a unit of sound pressure over a free field and over a pressure in the range from 0.01 to 63 Hz
  • AUDIOMETRY.
  • Work is underway to create a reference complex for transmitting audiometric scales and providing measurements of the parameters of audiological equipment. After metrological certification, the standard will become part of the modernized standard GET 19-2010.

WORKS AND SERVICES:

The main activity is the development of reference measuring instruments for reproducing, storing and transmitting the size of a unit of sound pressure in the air to reference and working measuring instruments (SI).

The department carries out the calibration and calibration of vibro-acoustic SI and SI used for audiological studies and in telephone telemetry, tests to confirm the type of vibro-acoustic SI, certification of test facilities for determining the acoustic properties of materials (Kundt pipes, Tower of Pisa, Oberst, SAE plate, RTS-III and etc.) and research and certification of acoustic chambers (muffled and reverberation chambers, etc.)

 

DESCRIPTION OF THE PRODUCED PRODUCTS:

The department develops reference installations for the calibration of acoustic instruments and software for them according to the individual customer’s TK.

KEY TASKS:

Be no worse than advanced metrology organizations of other countries. For this, it is necessary to constantly improve the metrological base and take part in international key comparisons through the BIPM and COOMET.

ACHIEVEMENTS OF SCIENTIFIC AND TECHNICAL PROGRESS:

In the last decade, automated installations have been developed for calibrating sound level meters and microphones for the TsSM N.-Novgorod, Kirov, Arkhangelsk, Orel and Krasnoyarsk.

STATE PRIMARY STANDARDS:

  • State primary standard of the unit of sound pressure in air GET 19-2010.

PUBLICATIONS:

  • А. Коньков, С. Кузнецов. Влияние внешних условий на акустический импеданс камер связи на низких и инфранизких частотах, Законодательная метрология, № 4, 2000 г.
  • С. Кузнецов, А. Коньков. Компаратор звукового давления, Законодательная метрология, № 5, 2000 г.
  • Д.З. Лопашев. Стандартизация в шумометрии. Сб.тр. X сессии Российского акустического общества 29 мая – 2 июня 2000 г., М.: 2000.
  • Д.З. Лопашев, И.Е. Цукерников. Акустический шум и его измерение // Мир  измерений, - 2001-№7,8.
  • С. Кузнецов, А. Коньков. Климатические условия и поправка на капиллярность при градуировке микрофонов методом взаимности, Законодательная метрология, №  1, 2002 г.
  • Д.З. Лопашев, И.Е. Цукерников. Виброакустические факторы. Энциклопедия «Экометрия», Контроль физических факторов производственной среды, опасных для человека. / Под ред. В.Н. Крутикова, Ю.И. Брегадзе, А.В. Круглова / М.: ИПК Издательство стандартов, 2002.
  • Д.З. Лопашев, А.П. Гнутиков. Метод эталонного поля в акустических измерениях. Сб. тр. XIII Сессии Российского акустического общества. 25-29 августа 2003 г., М.: 2003.
  • С.В. Кузнецов, А.В. Коньков. Влияние радиального волнового движения на распределение звукового давления в цилиндрических камерах. Законодательная метрология, № 2, 2004 г.
  • Р.А. Кособродов, С.В. Кузнецов. Static pressure coefficient of laboratory standard microphones in the frequency range 2-250 Hz, Precise comparison of measuring condenser microphones XI Международный конгресс по звуку и вибрации, июль 2004, Россия, С.-Петербург, стр. 131, 134.
  • Д.З. Лопашев, А.В. Коньков, С.В. Кузнецов, А.М. Поликарпов. История эталонной базы в области акустических измерений в воздушной среде. Сб. тр. Метрология гетерогенных сред и физико-механических измерений. М. 2004.
  • Д.З. Лопашев. Рабочие эталоны в акустике. Сб. тр. Метрология гетерогенных сред и физико-механических измерений. М. 2004.
  • Д.З. Лопашев. Заглушенные камеры для акустических измерений. Сб. тр. Метрология гетерогенных сред и физико-механических измерений. М. 2004.
  • Р.А. Кособродов, С.В. Кузнецов. Точный метод сравнения для градуировки конденсаторных микрофонов. XI Международный конгресс по звуку и вибрации, июль 2004, Россия, С.-Петербург, на русском и английском языках.
  • А.В. Коньков и Г.А. Таварткиладзе. Энциклопедия «Экометрия», Воздействие на организм человека вредных и опасных физических производственных факторов. Медико-биологические и метрологические аспекты, 2 тома, раздел по Аудиометрии в томе 2, 2005г.
  • Д.З. Лопашев, И.Е. Цукерников. Виброакустические факторы. Энциклопедия «Экометрия», Контроль физических факторов производственной среды, опасных для человека. М.: ИПК Издательство стандартов. В печати с 2005 года.
  • Д.З. Лопашев. О метрологическом обеспечении акустических измерений, Сб. трудов XVI сессии Российского акустического общества 4-18 ноября 2005 г., т.2 Акустические измерения и стандартизация. Ультразвук и ультразвуковые технологии. Атмосферная акустика. Акустика океана. Москва, ГЕОС 2005 г., стр. 3-5.
  • С.Ю. Колесов, Р.А. Кособродов, С.В. Кузнецов. Автоматизированная установка для поверки измерительных конденсаторных микрофонов. Сб. трудов XVI сессии Российского акустического общества 4-18 ноября 2005 г., т.2 Акустические измерения и стандартизация. Ультразвук и ультразвуковые технологии. Атмосферная акустика. Акустика океана. Москва, ГЕОС 2005 г., стр. 30-33.
  • Д.З. Лопашев. О метрологическом обеспечении акустических измерений. Сб.тр. XVI Сессии Российского  акустического общества 14-18 ноября 2005 г. М, ГЕОС, 2005.
  • R. Kosobrodov, S. Kuznetsov, Acoustic Transfer Impedance of Plane-Wawe Coupler, Acta Acustica united with Acustica, vol. 92 (2006)
  • Коньков А.В. Кузнецов С.В. Международные сличения национальных  акустических эталонов. Сборник трудов  19 сессии Российского Акустического Общества, Том 2, 2007 г., стр.5-7.
  • ГОСТ Р 8.765-2011 «ГСОЕИ. Государственная поверочная схема для средств измерений звукового давления в воздушной среде в диапазоне частот от 2 Гц до 100 кГц» (Коньков А.В., Кузнецов С.В., Колесов С.Ю.).
  • ГОСТ Р МЭК 61094-2-2011 «ГСОЕИ. Микрофоны измерительные. Часть 2. Первичный метод градуировки по давлению лабораторных эталонных микрофонов методом взаимности» (Коньков А.В., Поликарпов А.М.).
  • ГОСТ Р МЭК 61094-7-2011 /IEC/TS 61094-7:2006  «ГСОЕИ. Микрофоны измерительные. Часть 7. Разница в уровнях чувствительности по свободному полю и по давлению для лабораторных эталонных микрофонов» (Коньков А.В., Кузнецов С.В.).
  • ГОСТ Р 53188.2- 2010 (МЭК 61672-2:2003)  «ГСОЕИ. Шумомеры. Часть 2. Методы испытаний»  (Коньков А.В., Поликарпов А.М.).
  • ГОСТ Р 53188.3- 2010 (МЭК 61672-3:2006)  «ГСОЕИ. Шумомеры. Часть 3. Методика поверки»  (Коньков А.В., Поликарпов А.М.).
  • ГОСТ Р 8.714-2010  (МЭК 61260:1995)  «ГСОЕИ. Фильтры октавные и на доли октавы. Технические требования и методы испытаний» (Коньков А.В., Поликарпов А.М.).

WORKS AND SERVICES:

  • development, maintenance and operation of state primary standards and measuring instruments of the highest accuracy in the field of measurement of the unit of overpressure - Pascal in the range from 0 to 1600 MPa, verification and calibration of pressure SI in the specified range, tests for the purpose of approving the type of pressure SI, certification of test facilities, using high pressure;
  • conducting fundamental and applied research aimed at ensuring the unity and reliability of measurements of pulsed (dynamic) pressure.
  • Development of new standard measuring instruments for pulse (dynamic) pressure. Certification test equipment. Development of regulatory documentation (GOST, calibration methods, measurement techniques);
  • conducting fundamental research in the field of shock wave chemistry;
  • tests for the approval of the type of measuring instruments;
  • certification of measuring instruments;
  • certification of test equipment;
  • development and certification of measurement methods (MVI);
  • development of methods for calibration and calibration of measuring instruments;
  • verification and calibration of measuring instruments;
  • metrological examination of technical documentation.

KEY TASKS:

  • Ensuring the uniformity of measurements in the field of static and pulse pressures.
  • Fundamental scientific research in the field of shock wave chemistry.
  • Study of the real structure of solids subjected to high static and dynamic pressures.
  • Investigation of the mechanical and physical properties of materials obtained by the shock wave method.
  • The study of the kinetics of chemical reactions that occur during shock compression.
  • Measurement of thermodynamic and kinematic characteristics of shock waves.
  • Investigation of the properties and structure of colloidal solutions based on nanodiamond.
  • Ensuring the uniformity of measurements in the field of applied mechanics.

ACHIEVEMENTS OF SCIENTIFIC AND TECHNICAL CHARACTER:

In the last decade, the State primary special standard of high pressure has been substantially improved.

Improved pulse pressure generators:

  • installation of high accuracy UHT 84-A-93;
  • shock tube UT-4;
  • shock tube UT-80.

Studies have been conducted on the following RFBR grants:

  • Shock-wave synthesis of BN-fullerene.
  • Shock compression of substances in electromagnetic fields.
  • Obtaining monolithic samples of cubic boron nitride by the method of dynamic-static compression.
  • The study of the mechanism of solid-phase detonation.

Elements of the normative-methodical base for providing measurements of the mechanical and tribological properties of nanomaterials have been developed.

 

STATE PRIMARY STANDARDS:

The state primary standard of the pressure unit in the range of 10 - 1600 MPa and the effective area of ​​piston pairs of piston-type manometers in the range 0.05 - 1 cm2 (GET 43-2013)

TESTING OPPORTUNITIES:

The laboratory is equipped with testing equipment that provides research in the field of applied mechanics:
  • Complex of installations for modeling and research of vortex and turbulent gas flows (including in devices implementing such flows).
  • Aerodynamic and shock tubes.
  • Universal testing machines for compression, tension, twisting of structural materials in the load range up to 1000 MN.

INNOVATION PROJECTS:

2008-2010 - “Creating a regulatory and methodological framework to ensure the uniformity of measurements of the mechanical and tribological properties of nanomaterials and nanoindustry products”.

2011 - "Development of elements of the regulatory and methodological framework for the provision of measurements of the mechanical and tribological properties of nanomaterials for NITU" MISiS ".

PATENTED SOLUTIONS:

  • The method of vortex grinding materials and device for its implementation - Patent number 002586, 1999.
  • Whirling Mill - Patent number 2209672, 2002.

WORKS AND SERVICES:

The main activity is to ensure the uniformity of hardness measurements, based on the storage and reproduction of the hardness number by the state primary standards of hardness on Rockwell, Vickers, Brinell, Shore D, Martens scales and indentation and transfer of their size using standard measuring instruments to working measuring instruments in accordance with state calibration standards. schemes. The laboratory carries out verification and calibration of SI hardness, measurement of geometric parameters of Rockwell and Vickers tips, as well as tests for the purposes of approving the type of SI, certification of hardness measurement techniques.

KEY OBJECTIVES:

  • Ensuring the uniformity of measurements of the hardness of metals and alloys.
  • Participation in key comparisons of national standards of hardness in the CCM / BIPM and COOMET lines.
  • Improvement of the GET 161-01 to ensure uniformity of measurements on the Leib scale.

MAIN FUNCTIONS:

  • Improvement of the reference base for measuring hardness.
  • Verification and calibration of SI hardness.
  • Tests with the purpose of approving the type of SI.
  • Development of new and improvement of the old regulatory and technical documentation.
  • Participation in international comparisons of national standards.
  • Publication of the results of the research activities of the laboratory in the domestic and foreign press.

ACHIEVEMENTS OF SCIENTIFIC AND TECHNICAL CHARACTER:

  • In recent years, the center of state standards of hardness on Rockwell, Vickers and Shore scales with an automated measurement cycle has been created, which made it possible to exclude the operator’s subjective error.
  • Methods of processing the measurement data were created, taking into account the peculiarities of the order scales, which include all hardness scales. Getting results have been implemented in a number of state standards for measuring hardness.
  • Laboratory 360 is the pilot of key COOMET regional comparisons on Vickers and Brinell hardness scales.
  • The range of loads of the state standard on Vickers scales has been expanded to 0, 00098N. The improved benchmark was launched in 2011.
  • In 2012, the laboratory 360, as a participant in comparisons in the CCM / BIPM line, conducted a series of measurements of the parameters of Rockwell diamond tips. The results are processed by the comparison coordinator.
  • In 2013, the CMB / BIPM approved the final report and the results of key comparisons of national standards of Russia and Germany on Vickers hardness scales. The results of the comparisons are published in the journal Metrologia, 2013, 50, Tech. Suppl., 07008.
  • In 2014, the State Primary Standard of Hardness was created according to Martens and indentation scales.

STATE PRIMARY STANDARDS:

  • State primary benchmark for the hardness of metals on Rockwell and Super-Rockwell GET scales 30-2018.
  • State primary standard for the hardness of metals on Brinell GET scales 33-85.
  • State primary standard for the hardness of metals on the Vickers GET scales 31-2010.
  • The state primary standard of hardness of metals on scales of Shor D GET 161-2001.
  • Galindent reference setup for determining the geometric parameters of Rockwell and Vickers tips.
  • State primary standard of hardness on Martens and GET indentation scales 211-2014.