

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РФ

ФГУП «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ И РАДИОТЕХНИЧЕСКИХ ИЗМЕРЕНИЙ»

ИЗМЕРИТЕЛИ

мощности

СВЧ

М3-120

M3-122

- ИЗМЕРИТЕЛЬ МОЩНОСТИ ТЕРМИСТОРНЫЙ УНИФИЦИРОВАННЫЙ МЗ-121
- ВАТТМЕТР ПРОХОДНОГО ТИПА М1-37
- ВАТТМЕТР ОКОНЕЧНОГО ТИПА М3-122
- ВАТТМЕТР ПОГЛОЩАЕМОЙ МОЩНОСТИ М3-120
- ВАТТМЕТР КОМБИНИРОВАННЫЙ ПРОХОДЯЩЕЙ МОЩНОСТИ МК1-1

О ПРЕДПРИЯТИИ

Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений является важнейшим звеном в национальной системе обеспечения единства измерений и решает задачи научно-технического оснащения и развития метрологии как научной основы измерительной техники. Предприятие участвует в реализации ряда приоритетных направлений развития науки, техники и критических технологий, выполняет функции головной организации Росстандарта по поддержанию и развитию метрологического обеспечения системы ГЛОНАСС.

ВНИИФТРИ признан одним из лидеров среди российских метрологических институтов, подведомственных Росстандарту. По результатам оценки, проведенной в 2019 году, Приказом Росстандарта № 3247 от 23.12.2019 года ФГУП «ВНИИФТРИ» отнесено к 1 категории – научные организации-лидеры.

Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений ВНИИФТРИ:

Государственный научный центр Российской Федерации;

Государственный научный метрологический институт России;

Главный метрологический центр Государственной службы времени, частоты и определения параметров вращения Земли (ГМЦ ГСВЧ);

Головная организация Федерального агентства по техническому регулированию и метрологии (Росстандарт) в ряде областей и видов измерений. Дата основания ВНИИФТРИ – 18 февраля 1955 года

Научно-исследовательское отделение метрологии радиотехнических и электромагнитных измерений (НИО-1)

НИО-1 было создано в 1956 году, когда в институте начались разработки исходных средств радиотехнических измерений высшей точности. В настоящее время в отделении сформировались три основных направления, связанных с метрологическим обеспечением измерений параметров радиочастотных трактов, сигналов и электромагнитных полей, а его эталонную базу составляют 13 Государственных первичных эталонов.

НИО-1 проводит следующие работы:

- ✓ выполнение научно-исследовательских и опытно-конструкторских работ по закрепленной тематике;
- калибровка и поверка эталонных и высокоточных рабочих средств радиотехнических и электромагнитных измерений; испытания в целях утверждения типа широкой номенклатуры радиоизмерительных приборов, в числе которых находятся: СВЧ-ваттметры, анализаторы спектра и приемники измерительные, анализаторы цифровых сетей, измерители напряженности электрического и магнитного полей, плотности потока энергии, измерительные антенны, измерители девиации и амплитудной модуляции, измерители радиояркостной температуры, осциллографы, генераторы сигналов, антенные и радиолокационные измерительные комплексы;
- ✓ аттестация методик измерений (ГОСТ Р 8.563-2009) и испытательного оборудования (ГОСТ Р 8.568-2017), включая безэховые и экранированные камеры и сооружения, антенные полигоны открытого типа, открытые и альтернативные измерительные площадки;
- ✓ испытания, сертификация средств измерений и технических средств по параметрам электромагнитной совместимости, а также другие работы и услуги, предусмотренные областями аккредитации ВНИИФТРИ;
- ✓ разработка нормативных документов по метрологии радиотехнических и электромагнитных измерений;
- ✓ разработка и изготовление вторичных эталонов в области радиотехнических измерений;
- ✓ выполнение прецизионных измерений характеристик антенных устройств и систем (в том числе активных, фазированных и цифровых антенных решеток, антенн МІМО систем связи 5G).

Измеритель мощности термисторный унифицированный M3-121

ОПИСАНИЕ

Измеритель мощности термисторный vнифицированный (ИМТУ) M3-121 комплекте разными типами термисторных преобразователей предназначен для измерений мощности электромагнитных колебаний в диапазоне частот, определяемых подключенным преобразователем. Измеритель обеспечивает работу с термисторными преобразователями нового поколения. а также имеет обратную совместимость с преобразователями серии М5 и М1.

ПРЕИМУЩЕСТВА:

- ✓ функции учета температурного дрейфа термисторных преобразователей;
- ✓ обратная совместимость с преобразователями серий М5 и М1;
- ✓ одновременное подключение двух преобразователей;
- удаленный доступ по интерфейсу USB 2.0;
- ✓ высокая точность измерений на постоянном токе;
- ✓ широкий диапазон регулировки сопротивления.

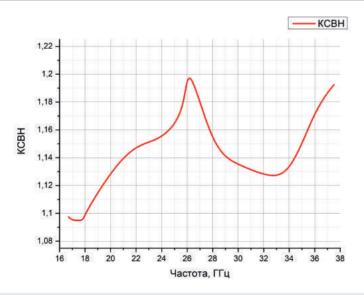
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЯ МОЩНОСТИ МЗ-121

Диапазон измерений мощности, мВт	от 0,01 до 10
Диапазон регулировки мощности подогрева, мВт	от 10 до 80
Диапазон регулировки сопротивления, Ом	от 70 до 2000
Предел допускаемой погрешности установки сопротивления, %	±0,1
Пределы допускаемой относительной погрешности измерений мощности, %	$\pm \left(0.2 + \frac{0.001}{P_x^*}\right)$
Цифровой интерфейс	USB 2.0
* – значение измеренной мощности, мВт	

Ваттметр оконечного типа М3-122

(диапазон частот - от 16,7 до 37,5 ГГц)

ОПИСАНИЕ


Измеритель МЗ-122 состоит из блока измерительного и комплекта первичных термисторных преобразователей оконечного типа.* Применяется для измерения падающей мощности на выходе генераторов и передатчиков, а также для градуировки и настройки СВЧ-трактов в диапазоне частот от 16,7 до 37,5 ГГц.

- функции учета температурного дрейфа термисторных преобразователей из комплекта поставки:
- удаленный доступ по интерфейсу USB 2.0;
- регулируемый коэффициент стоячей волны по напряжению преобразователей из комплекта поставки;
- ✓ высокая скорость измерений.

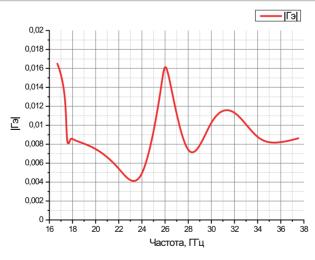
^{* -} комплектность может быть сформирована по требованию Заказчика

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЯ МОЩНОСТИ М3-122

Диапазон рабочих частот, ГГц: – M3-122 (с ПТО 26 и ПТО 37) – M3-122/1 (с ПТО 26) – M3-122/2 (с ПТО 37)	от 16,70 до 37,50 от 16,70 до 25,86 от 25,86 до 37,50
Диапазон измерений мощности непрерывных синусоидальных сигналов, мВт	от 0,01 до 10
Пределы допускаемой относительной погрешности измерения мощности, %	$\pm \left(2,0+\frac{0,05}{P_{x}^{*}}\right)$
КСВН входа, не более	1,3
Время установления рабочего режима, мин	30
Цифровой интерфейс	USB 2.0
* – значение измеренной мощности, мВт	-

Ваттметр проходного типа М1-37

(диапазон частот - от 16,7 до 37,5 ГГц)


ОПИСАНИЕ

Ваттметр проходного типа М1-37 состоит из блока измерительного и выносного термисторного преобразователя проходного типа. Ваттметры предназначены ЭМК измерений мошности для при поверке, испытаниях и калибровке СВЧ-устройств, в том числе ваттметров оконечного типа, а также точных измерений мошности на выходе генераторов и передатчиков.

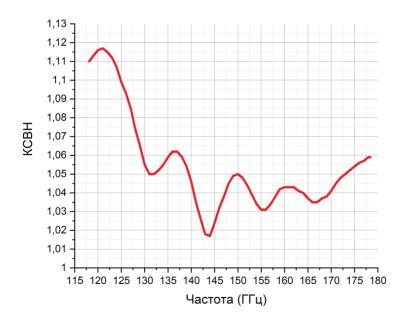
- ✓ возможность аттестации в качестве рабочего эталона 1-го разряда;
- функции учета температурного дрейфа термисторных преобразователей из комплекта поставки;
- √ высокая скорость измерений;
- ✓ облегченная конструкция;
- ✓ удаленный доступ по интерфейсу USB 2.0.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВАТТМЕТРА ПРОХОДНОГО ТИПА M1-37

Диапазон рабочих частот, ГГц: - М1-37 (с ПТП 26 и ПТП 37) - М1-37/1 (с ПТП 26) - М1-37/2 (с ПТП 37)	от 16,70 до 37,50 от 16,70 до 25,86 от 25,86 до 37,50
Диапазон измерений мощности непрерывных синусоидальных сигналов, мВт	от 0,1 до 10
Пределы допускаемой относительной погрешности измерения мощности, %	$\pm \left(1,5 + \frac{0,05}{P_x^*}\right)$
Модуль эффективного коэффициента отражения выхода, не более	0,03
Время установления рабочего режима, мин	30
Цифровой интерфейс	USB 2.0
* – значение измеренной мощности, мВт	

Измеритель мощности М3-120

(диапазон частот от 118,1 до 178,6 ГГц)


ОПИСАНИЕ

Ваттметр поглощаемой мощности МЗ-120 предназначен для измерений мощности электромагнитных колебаний, распространяемых в закрытых волноводных трактах, в качестве контрольно-измерительного оборудования при настройке и градуировке радиоэлектронной аппаратуры и при проведении научных исследований.

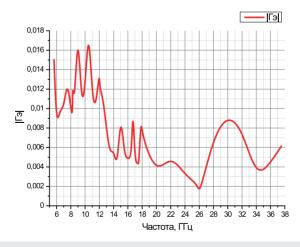
- ✓ превосходное согласование с линией передачи;
- ✓ изменение калибровочного коэффициента между стандартными частотами не более 0,5%;
- ✓ долговременная стабильность характеристик;
- удаленное управление по интерфейсу USB 2.0.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИЗМЕРИТЕЛЯ МОЩНОСТИ М3-120

Диапазон рабочих частот, ГГц	от 118,1 до 178,6
Сечение волноводного тракта	1,6 × 0,8 мм
Диапазон измерений мощности	от 1 до 20 мВт
KCBH	не более 1,2
Пределы допускаемой относительной погрешности измерений мощности подогрева	не более ±0,2 %
Предел погрешности	±8,0 %

Типовые значения КСВН преобразователей мощности

Ваттметр комбинированный проходящей мощности МК1-1 (диапазон частот – от 5,64 до 37,5 ГГц)


ОПИСАНИЕ

Ваттметр комбинированный проходного типа МК1-1 предназначен для измерений мощности электромагнитных колебаний и КСВН в закрытых волноводных трактах, и применяется в качестве контрольно-измерительного оборудования при настройке и градуировке радиоэлектронной аппаратуры, а также её испытаниях и поверке средств измерений.

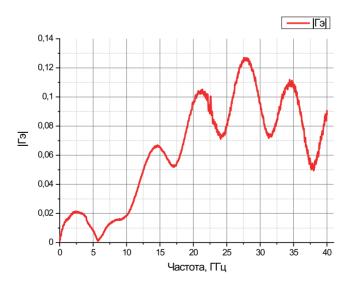
- ✓ одновременное измерение мощности и КСВН:
- автоматизированное проведение работ по поверке волноводных ваттметров и их первичных преобразователей мощности;
- ✓ расчет погрешности поверки, ведение базы данных, обработка данных по требованию оператора, документирование полученных результатов и хранение их в базе данных;
- ✓ печать протокола поверки и свидетельства о поверке;
- ✓ возможность аттестации в качестве рабочего эталона 1-го разряда.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВАТТМЕТРА КОМБИНИРОВАННОГО МК1-1

Диапазон рабочих частот, ГГц:	
MK1-1/35	от 5,64 до 8,24 ГГц
MK1-1/28,5	от 6,85 до 9,93 ГГц
MK1-1/23	от 8,24 до 12,05 ГГц
MK1-1/17	от 11,55 до 16,70 ГГц
MK1-1/16	от 12,05 до 17,44 ГГц
MK1-1/11	от 16,70 до 25,95 ГГц
MK1-1/7,2	от 25,95 до 37,50 ГГц
Диапазон измерений мощности непрерывных синусоидальных сигналов,	от 1 до 10
мВт	от гдо то
Модуль эффективного коэффициента	
отражения выхода, не более	
MK1-1/35-16	0,02
MK1-1/11-7,2	0,03
Погрешность измерений КСВН,	1 (5.K + 1) 0/ ₂
не более	± (5·K+1) %
Погрешность измерений мощности	± 1,6 %

Калибратор мощности коаксиальный М1-2/1

(диапазон частот - от 9 кГц до 40 ГГц)


ОПИСАНИЕ

Калибратор мощности коаксиальный М1-2/1 предназначен для измерений проходящей в нагрузку СВЧ-мощности, поверки и калибровки ваттметров СВЧ-мощности оконечного типа, измерительных приемников, анализаторов спектра в диапазоне частот от DC до 67 ГГц в стандартизированных коаксиальных трактах.

- ✓ высокая долговременная стабильность метрологических характеристик;
- у эргономичность при проведении поверочных работ;
- ✓ цифровой интерфейс USB 2.0;
- ✓ комплекс программного обеспечения для проведения поверочных работ;
- ✓ высокая скорость измерений.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КАЛИБРАТОРА МОЩНОСТИ М1-2/1

Поперечные размеры коаксиального тракта, мм	2,4 / 1,2
Диапазон частот	от 9 кГц до 40 ГГц
Диапазон измерения мощности СВЧ, мВт	от 1 до 20
Допускаемые пределы относительной погрешности значений калибровочного коэффициента:	0–20 ГГц – не более 2,0 % 20–40 ГГц – не более 2,5 %
Модуль эффективного коэффициента отражения выхода:	0–20 ГГц – не более 0,05 % 20–40 ГГц – не более 2,5 %
Модуль эффективного коэффициента отражения выхода с применением Г-коррекции	не более 0,05

Типовые значения эффективного коэффициента отражения выхода ваттмера

СПРАВОЧНАЯ ИНФОРМАЦИЯ

СРАВНЕНИЕ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ИЗМЕРИТЕЛЯ МОЩНОСТИ М3-121 С АНАЛОГАМИ

Модель	ИМТУ МЗ-121	Измеритель мощности М3-22A	Agilent N432A	TEGAM 1830A
Диапазон измерений мощности, мВт	от 0,01 до 10	от 0,01 до 10	от 0,1 до 40	от 0,01 до 50
Диапазон регулировки мощности подогрева, мВт	от 10 до 80	от 7 до 70	от 10 до 40	от 10 до 60
Диапазон регулировки сопротивления, Ом	от 70 до 2000	от 75 до 400	от 100 до 400	от 100 до 300
Предел допускаемой погрешности установки сопротивления, %	±0,1	±0,1	±0,2	±0,3
Цифровой интерфейс удаленного доступа	USB 2.0	Отсутствует	USB 2.0	USB 2.0
Сенсорный дисплей	Да	Отсутствует	Отсутствует	Отсутствует

СРАВНЕНИЕ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ИЗМЕРИТЕЛЯ МОЩНОСТИ М3-122 С АНАЛОГАМИ

Характе- ристика СИ	Наличие в реестре ФГИС «АРШИН»	Диапазон частот, ГГц	Тип тракта	Диапазон измерений мощности, дБм	КСВН	δ, %
M3-122/1	да	от 16,7 до 25,86	7,2×3,4	от –20 до 10	1,30	±2,5
M3-122/2	да	от 25,86 до 37,5	11×5,5	от –20 до 10	1,30	±2,5
M3-22A c M5-44	да	от 16,7 до 25,86	7,2×3,4	от –20 до 10	1,40	±5,0
M3-22A c M5-45	да	от 25,86 до 37,5	11×5,5	от –20 до 10	1,50	±5,0
N432A c K486A	нет	от 18 до 26,5	WR42	от –15 до 10	2,00	±3,0
N432A c R486A	нет	от 26,5 до 40	WR28	от –15 до 10	2,00	±3,0
N1914A c N8486AR	да	от 26,5 до 40	WR-28	от –35 до 20	1,40	±4,0
N1914A c N8485A +ΠΒΚ	нет	от 16,7 до 25,86	11×5,5	от –35 до 20	1,30	±4,0
N1914A c N8487A +ΠΒΚ	нет	от 25,86 до 37,5	7,2×3,4	от –35 до 20	1,30	±4,5
U8485A +ΠBK	нет	от 16,7 до 25,86	11×5,5	от –35 до 20	1,30	±4,0
U8487A +ΠΒΚ	нет	от 25,86 до 37,5	7,2×3,4	от –35 до 20	1,30	±4,5
NRP-Z55 +ΠBK	нет	от 16,7 до 25,86	11×5,5	от -35 до 20	1,30	±10,0

ОСНОВНЫЕ ТИПЫ ВОЛНОВОДНЫХ ТРАКТОВ И ИХ ЧАСТОТНЫЕ ДИАПАЗОНЫ

Сечение волноводного тракта, мм	Диапазон частот, ГГц	Сечение волноводного тракта, мм	Диапазон частот, ГГц
35,0×15,0	от 5,64 до 8,15	7,2×3,4	от 25,95 до 37,50
28,5×12,6	от 6,85 до 9,93	5,2×2,6	от 37,50 до 53,57
23,0×10,0	от 8,15 до 12,05	3,6×1,8	от 53,57 до 78,33
17,0×8,0	от 11,55 до 16,70	2,4×1,2	от 78,33 до 118,1
16,0×8,0	от 12,05 до 17,44	1,6×0,8	от 118,1 до 178,6
11,0×5,5	от 17,44 до 25,95	1,10×0,55	от 178,6 до 258,4

$$\lambda_{B} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{2a}\right)^{2}}}$$

где λ – длина волны в свободном пространстве; \mathcal{A} – размер широкой стенки волноводного канала.

УРАВНЕНИЯ КОНВЕРТАЦИИ ЕДИНИЦЫ МОЩНОСТИ

Конвертация мВт в дБм	Конвертация дБм в мВт
$MBT = 10^{\frac{\pi BM}{10}}$	дБм=10·log (мВт)
Конвертация Вт в В _{RMS}	Конвертация В _{RMS} в Вт
$B = \sqrt{B_T \cdot 50\Omega}$	$B_T = \frac{B^2}{50\Omega}$

УРАВНЕНИЯ КОНВЕРТАЦИИ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ

Конвертация Г в КСВН	Конвертация КСВН в Г
$KCBH = \frac{1+ \Gamma }{1- \Gamma }$	$ \Gamma = \frac{\text{KCBH-1}}{\text{KCBH+1}}$

УРАВНЕНИЯ РАСЧЕТА ОБРАТНЫХ ПОТЕРЬ

$$|\Gamma| = 10^{\frac{-RL}{20}} \qquad RL = -20 \cdot \log |\Gamma|$$

Отдел сбыта

WWW.VNIIFTRI.RU

+7 (499) 130-51-21 +7 (495) 526-63-36, доб. 26-75, 24-90

141570, Московская область, г. Солнечногорск, р.п. Менделеево, ФГУП «ВНИИФТРИ»

optc@vniiftri.ru

